Это надо знать

Высоковольтные линии постоянного и переменного тока. Генерация напряжения в электротехнике

Считается, что ушли в прошлое времена, когда решался вопрос, каким быть электросетям в мире – сетям постоянного или переменного тока (так называемая «война токов или напряжений», имевшая место на рубеже 19-20 веков). Больше информации и свойств на сайте https://stroidizain.site/kabel-kabeks-vvgng-ls-p-3×1-5/ .В настоящее время большинство сетей – это сети переменного напряжения с частотой 50 / 60 Гц. Тем не менее, последние события в энергетике показывают, что старая дискуссия может вернуться.

В настоящее время идут процессы, которые могут потеснить монополию переменного тока

Развитие высоковольтных систем постоянного тока (ЛПТ / HVDC систем) в системах электропередачи продолжается благодаря следующим преимуществам :

  • Отсутствуют потери на излучение, так электромагнитные волны излучает только проводник с переменным током.
  • В сети нет реактивной (паразитной) мощности и, следовательно, затрат на борьбу с ней, т.е. нет коэффициента мощности и необходимости его улучшения.
  • Экономия на материалах опор ЛЭП, проводов.
  • Основное преимущество HVDC – это возможность передать большее количество энергии на большое расстояние с меньшими капитальными затратами и меньшими потерями, чем в HVAC линиях.
  • В зависимости от уровня напряжения и конструкционных особенностей потери составляют около 3% на 1км . HVDC позволяют более эффективно использовать энергетические источники удаленные от нагрузочных центров.

Основные примеры, где использование HVDC более эффективно, чем HVAC:

  • Подводные кабели (например, 250 км Балтийский кабель между Швецией и Германией , 600 км кабель NorNed между Норвегией и Голландией, 290 км связка Basslink между Австралийским материком и Тасманией [1]). В подводных кабелях линии переменного тока неэффективны по причине потерь на токи Фуко в солёной воде.
  • Дальнемагистральные мощные линии электропередачи типа «конечная точка – конечная точка» без промежуточных ответвлений, например, в удаленных (незаселенных) областях.
  • Увеличение мощности существующей силовой сети в ситуациях, где дополнительные провода устанавливать трудно или дорого.
  • Передача мощности и стабилизация между несинхронизированными распределительными системами переменного напряжения (Power transmission and stabilization between unsynchronised AC distribution systems).
  • Подключение удалённой генерирующей электростанции к главной сети, например: Nelson River DC Transmission System.
  • Стабилизация преобладающей AC сети за счет того, что HVDC не вносит вклад в общий ток КЗ системы (Stabilizing a predominantly AC power-grid, without increasing prospective short circuit current).
  • Снижение цены линии электропередачи. HVDC нуждается в меньшем количестве проводников так как нет необходимости поддержки многофазных систем. Так же, из-за отсутствия скин-эффекта могут использоваться более тонкие проводники.
  • Облегчение передачи (обмена) энергией между странами (районами, сетями), которые используют разные частоты промышленной сети.
  • Синхронизация сетей переменного напряжения, выработанного ВИЭ
Читать так же:  Как устранить запотевание окон ПВХ?

Преимущества и недостатки HVDC по другому источнику :

  • Большая передаваемая мощность для проводника одного сечения (нет излучения, нет скин-эффекта и др.).
  • Более простая конструкция линии (нет реактивных компенсаторов и др.).
  • Может быть использован возврат через землю (ОЛВЗ). Имеется в виду, что меньше потери на токи Фуко и др., т.к. в HVAC линиях также используется ОЛВЗ / SWER.
  • В случае ОЛВЗ каждый проводник может работать как независимая цепь.
  • Нет зарядного тока, т.е. переменного тока идущего на подзаряд емкостей линии (No charging current. Additional current must flow in the cable to charge the cable capacitance). Это особенно важно в подземных / подводных кабелях.
  • Поэтому в подводных ЛЭП HVDC используется уже несколько десятилетий.
  • Кабели могут работать при более высоком градиенте напряжения (так как нет токов Фуко).
  • Коэффициент мощности линии всегда равен единице: реактивной мощности нет, линия не требует реактивной компенсации.
  • Меньше коронный разряд и радиопомехи, особенно в плохую погоду, для проводника с теми же самыми диаметром и RMS напряжением как в HVAC.
  • Синхронная работа не требуется.
  • Следовательно, дистанция линии не ограничена требованиями стабильности.
  • Может соединять системы переменного напряжения с разными частотами.
  • Низкий ток КЗ в линии с постоянным током (Low short-circuit current on DC line).
  • Не вносит вклад в ток КЗ AC линии (Does not contribute to short-circuit current of a A.C system).
  • Регулирование перетоков мощности легко осуществляется / контролируется (Tie-line power is easily controlled).

Конверторы дороги.

  • Конверторы сопряжения с HVAC сталкиваются с проблемой реактивной мощности.
  • Конверторы генерируют гармоники, требуются фильтры.
  • Мультитерминальную (сеть с множеством потребителей) систему построить нелегко (Multiterminal or network operation is not easy).
  • Дальние дистанции технически недостижимы для линий HVAC без промежуточных станций компенсации реактивной мощности. Частота и промежуточные реактивные компоненты вызывают проблемы стабильности AC линии. С другой стороны HVDC линия электропередачи не имеет проблемы стабильности из-за отсутствия частоты, и следовательно, нет ограничения на длину линии.
  • Цена на единицу длины для HVDC линии ниже, чем для HVAC при той же мощности и надёжности. Однако, цена терминального оборудования (оборудования конечных станций) HVDC линии значительно выше чем HVAC.
  • Наибольшее ценовое преимущество HVDC линии достигается на расстояниях свыше 500-800 км. HVDC линии меньше воздействует на человека и на природу в целом, это делает HVDC более «дружелюбной» по отношению к окружающей среде .
Читать так же:  Можно ли крепить вагонку без обрешетки?

Преимущества HVDC :

Высоковольтные DC и сверхвысоковольтные DC системы – это совершенные технологии, превосходно подходящие для целей интеграции различных источников энергии таких, как солнце и ветер в локальные электрические сети. Это особенно важно для крупномасштабных оффшорных проектов ветроэлектростанций, или крупномасштабных СЭС. HVDC имеют многочисленные преимущества над традиционной HVAC ЛЭП. Больше информации и свойств на сайте https://stroidizain.site/kabel-kabeks-vvgng-ls-p-3×1-5/ .Одно из главных преимуществ HVDC – малые потери при передаче энергии, в отличие от больших потерь в HVAC линиях. Основное практическое правило выглядит следующим образом: на каждые 1000 км DC линии потери составляют менее 3% (на примере линии 5000 МВт, 800 кВ). Обычно потери DC линии на 30-40% меньше, чем потери для линий AC, при тех же уровнях напряжения. Поэтому для ЛЭП большой длины DC (ЛПТ) являются единственным приемлемым решением, как с технической, так экономической точки зрения. Подтверждение можно можно почерпнуть из опытных данных, представленных ниже и полученных на HVAC и HVDC Transmission system for the Nelson River Bipole . Из графиков сравнения затрат на строительство стандартной ЛЭП и ЛПТ, видно что начиная с расстояния 450 миль ЛПТ более выгодны, и с дальнейшим ростом расстояния выгода растёт.

Статьи по теме

Кнопка «Наверх»